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Abstract

For many problems in economics, econometricians only observe realizations of the derivative

of the function they are interested in. This situation occurs each time one studies the objective

function of an agent while only a �rst order condition resulting from an optimization problem is

available. We propose a nonparametric procedure to estimate the integral of unknown, unspec-

i�ed economic functions. A very simple integral estimator, built on Mack and Müller's kernel

estimator (89), is suggested and analyzed. We propose plug-in and cross-validation criteria

adapted to our bandwidth choice problem. A factor method developped for derivative estima-

tors bandwidth selection is also examined ; we show how this method could be used to solve

our bandwidth choice problem. An application to pollution abatement cost functions shows the

potential of this procedure for many other types of economic problems.
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1 Introduction

In many economic problems, it is not possible to observe directly the function the economist is

interested in. Information available is often reduced to some realizations of the derivative of this

unknown function. This type of situation occurs each time econometricians [economists] are in-

terested in the objective function of an agent whereas they only observe a �rst order condition

resulting from an optimization program. Let us take two simple examples: the utility maximiza-

tion problem of a consumer and the pro�t maximization program of a producer. By maximizing

its utility under the budget constraint, the consumer equates the marginal utility of consumption

to price. By maximizing his pro�ts under the technological constraint, the producer equalizes the

marginal product of each input to its price in term of output. In both cases, the resulting condition

of this optimization behavior is a �rst order condition whereas the function of interest is its integral.

In the example of the consumer problem, the utility function measures direct welfare variations

or unknown parameters such as risk-aversion and is of great interest. But usually, econometricians

[economists] postulate a parametric form to represent the marginal condition and then use statis-

tical methods to estimate the unknown parameters from the observed data. Since this condition

results from an optimization program under constraints, the particular form has to satisfy a certain

number of conditions. For example, the assumption of a quadratic utility function restricts the

demand equation to be linear. But, because there is a priori no data nor information on the agent

objective function, there are no reasons to specify a parametric form for the �rst order condition to

be estimated. Clearly such a type of procedure su�ers from the defect that the maintained hypoth-

esis of parametric form can rarely be directly tested.

These examples clearly show that it may be inappropriate, in some cases, to use a particular

form to estimate a function using data on its derivative. A natural question comes out from this

discussion: Is it possible to estimate a function without specifying any speci�c form, when one only

observes its derivative in some points? This is the question we are trying to answer in this paper

by using a nonparametric method.

The aim of nonparametric methods is precisely to estimate functions without specifying func-

tional forms. Historically, an area of application of these methods has been the analysis of observed

choices made by economic agents in the �eld of consumption and production. See for example the

seminal paper of Samuelson (1938) on the revealed preference theory or Diewert and Parkan (1978)

and Varian (1984) for more recent nonparametric approaches to the economics of consumption and

production.
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More recently, nonparametric procedures have been used in regression analysis either for regres-

sion estimation where no assumption on the functional form nor on the distribution in the regression

equation are speci�ed (see the books of Härdle (1992) or Pagan and Ullah (1999)), or for regressors

selection (Lavergne and Vuong (1996)), as well as for prediction in time series (see Bosq (1998))

or for testing parametric and nonparametric speci�cations (Härdle and Mammen (1989)) but also

to compare nonparametric regression curves (Hall and Hart (1990)) and in many other �elds of

econometrics.

In these works, the kernel method is certainly the most popular method, mainly because its prop-

erties are best understood since its de�nition by Nadaraya (1964) and Watson (1964). However, the

great �exibility of this method has a drawback which has been studied as often as the application of

nonparametric methods themselves: "the choice of the smoothing parameter, or bandwidth". This

quite technical issue has led to some important results concerning the optimal bandwiths related to

some theoretical and applied criteria see for example the work of Rice (1984), Härdle and Marron

(1989), Marron (1988), Härdle (1992), or Vieu (1991) for local bandwidths de�nition.

Another important issue, related to our integration problem, is the estimation of the deriva-

tive of a function as well as the function itself. The �rst derivative is often used, in regression

analysis for example, to measure the response coe�cient of the dependent variable with respect to

the regressors. One may for example think of elasticities of a demand function depending on the

derivatives of this unknown demand function. The second derivatives indicates the curvature of the

function and are useful for testing some particular shape hypothesis. In parametric econometrics

the estimation of these derivatives and testing of associated hypotheses are carried out by assum-

ing some speci�c form of the relationship (either linear or non-linear). Any mispeci�cation in this

formulation may induce inconsistent estimates of the true derivatives and may a�ect the size and

power of any test performed on them. As a response, nonparametric econometrics have focussed

in the mid-eighties on methods to estimate these derivatives, without any a priori hypotheses on

the shape of the function, see for example Gasser and Müller (1984), Härdle and Gasser (1985)

and Ullah and Vinod (1993) for a review. Mack and Müller (1989) have also proposed a simpli�ed

kernel estimator allowing an easy derivation. This estimator will be used in this paper. Of course

the problem of the bandwidth choice has also received a great attention in this framework (Rice

(1986) and Müller, Stadtmüller, and Schmitt (1987)).

Surprisingly, integrating a function has not received the same focus. Yet, integrating a kernel

estimator uses the same methodology and ideas than those used for derivating, even if it is often

said that �it is more di�cult to integrate than to derivate�. We will see that it is not the case

when using a nonparametric estimation framework. In this paper, we propose a nonparametric
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kernel method to estimate the integral of unknown, unspeci�ed regression functions, built on Mack

and Müller's kernel estimator. This estimator is very simple and easy to compute. As usual the

bandwidth choice for this estimator is crucial, and has to be studied in details. The question of the

error criterion used for the selection is clearly a main issue and may lead to di�erent bandwidth

selection procedures (either plug-in or cross-validation). We will discuss several questions of interest

on that problem and link it to its related problem of derivative estimators bandwidth choice. The

work already done in that �eld may be quite useful and will be examined: if the optimal band-

widths used for a derivative estimator are related in some way to the one used for the estimator

itself as it is said in Müller, Stadtmüller, and Schmitt (1987), one could take advantage of this result.

The paper is organised as follows. In the next section we present the nonparametric model and

de�ne the integral estimator we propose. In section 3, we discuss the bandwidth choice problem and

propose plug-in and cross-validation criterions adapted to our estimator. We also analyse various

results on bandwidth choice for derivative estimators and propose a factor method adaptated to

our estimator. Finally, in the last section, we conclude by an application in the �eld of production

analysis. We estimate the pollution abatement cost function on a sample of French �rms. This

empirical example shows, in practice, how to get the estimation of a cost function from data on

marginal abatement costs.

2 Nonparametric model and integral estimator

Let us consider q = p + 1 economic variables (X;Y ) where Y is the dependent variable and X is

a p � 1 vector of regressors. If E(j Y j) is �nite, then the nonparametric regression model can be

expressed as :

Y = f(x) + U (1)

where f(x) = E[Y j X = x] and U is the error term. If we denote by '(y; x) = '(y; x1; :::; xp) the

unknown joint density of (X;Y ) at point (x; y) and similarly '(x) the marginal density of X at x,

we can write f(x) as :

f(x) = E[Y j X = x] =

R
y � '(y; x)dy

'(x)
=

g(x)

'(x)
(2)

for '(x) 6= 0.

The unknown function f can be highly nonlinear and is not assumed to be expressible in some

parametric form. Usually the function f is of special interest by itself and its estimation has been

studied in detail in numerous papers (see Härdle (1992) or Pagan and Ullah (1999) for a recent

review).

However, recent works have focussed on the partial derivative of it. If f(x) is linear that is

f(x) = x1 � �1 + � � � + xp � �p as it is speci�ed in parametric econometrics, then the p �rst-order
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partial derivatives of f are simply the regression parameters (�1; � � � ; �p). These terms are constant

for x varying, while a nonparametric speci�cation of f allows these derivatives to vary with x. The

estimation of a function's integral, let say F of f , follows the same procedure. If we impose linearity

for f , we will get F quadratic, the coe�cients being determined by the linear estimation of f . It is

one thing to impose f linear and another to hold its derivative constant or its integral quadratic.

This is where nonparametric estimation helps in avoiding to specify or constrain a function, spe-

cially when it is not the function of interest.

Now, suppose that we have data (Xi; Yi)i=1;::;n ; n i.i.d. observations upon the q � 1 vector

(X;Y ). Then from (1), we have:

Yi = f(Xi) + Ui (3)

where the error term Ui is such that, by construction, E[Ui j Xi] = 0, and E[U
2
i
j Xi] = �

2
(Xi) <1.

The �rst aim of nonparametric estimation is to approximate f(x) arbitrarely closely on the

sample, provided that n is large enough. A large class of nonparametric estimators have been

de�ned as a weighted sum of the dependent variable (Ullah and Vinod (1993)) like the well known

Nadaraya-Watson kernel estimator:

d
f(x) =

nX
i=1

Yi �WNW (x;Xi; hn)

=
1

n � h
p

n

�

nX
i=1

Yi �
K(

Xi�x

hn
)

1
n�h

p
n
�

nP
i=1

K(
Xi�x

hn
)

=
bg(x)b'(x) (4)

where K(�) is the kernel function with the scale factor or window width hn; such that hn ! 0

and n � hn !1 as n!1.

Provided that the weight function WNW (�) is derivable, this estimator can be derived and one

may easily obtain an estimator of the partial derivative @f

@xj
. The partial derivative's estimator is

simply the estimator's partial derivative
@df(x)
@xj

.

In 1989, Mack and Müller proposed a modi�ed version of this estimator where the denominator

of df(x) in (4), an estimate of the marginal density '(x) at the �xed point x, is replaced by an

estimate of '(Xi) evaluated at the sample value Xi, for i = 1; � � � ; n.

bfMM(x) =
1

n � h
p

n

�

nX
i=1

Yi �
K(

Xi�x

hn
)

1
n�h

p
n
�

nP
j=1

K(
Xj�Xi

hn
)

(5)

=
1

n � h
p

n

�

nX
i=1

Yib'(Xi)
�K(

Xi � x

hn

) (6)
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The main advantage of this estimator lies in the absence of the variable x in the denominator

which allows an easy derivation. In fact, the estimation of '(Xi) could be done in a complete

di�erent manner, as mentioned by Mack and Müller themselves, any other consistent estimate of

'(�) will work. In particular, one could use a di�erent kernel function and a di�erent bandwidth

for b'(Xi) than the one used for the numerator of equation (5), that is for bg(x).
Derivation of Mack and Müller's estimator is straightforward, as is its integration.

Proposition 1 :

A functional estimator bF for the integral F of the unknown function f , up to a constant C, is

the integral of the estimate bf de�ned by
1
:

d
F (u) =

Z
u

�1

d
f(x) dx+ C

using the Mack and Müller estimator dfMM , leads to :

d
F (u) =

1

n � h
p
n

�

uZ
�1

nX
i=1

Yib'(Xi)
�K(

Xi � x

hn

) dx+ C

=
1

n � h
p
n

nX
i=1

Yib'(Xi)
�

uZ
�1

K(
Xi � x

hn

) dx+ C (7)

The value of this function d
F (�) at one point is needed to identify the constant C, for the ease of

the presentation we will omit this parameter and assume than C = 0 until the economic application

in section 4 where we estimate it.

At �rst, one may think that this estimator is a Mack and Müller estimator with a new kernel

KI(Xi; u; hn) =

uR
�1

K(
Xi�x

hn
) dx :

d
F (u) =

1

n � h
p

n

�

nX
i=1

Yib'(Xi)
�KI(

Xi � x

hn

) dx (8)

But it is not. The so-called kernelKI does not satisfy the assumptions necessary for the de�nition

of kernel estimator2, and is not a kernel3, therefore dF (�) is not really a kernel estimator, even if this

estimator is still a weighted sum of the dependent variable :

d
F (u) =

nX
i=1

Yi �WI(u;Xi; hn) (9)

1For simplicity in the equation we use the above simpli�ed notation ; of course this integral is on all components

and should be written : bF (u1; � � � ; up) = Z u1

�1

� � �

Z up

�1

bf(x1; ; � � � ; xp)dx1; � � � ; dxp
This notation will be used without speci�c mention in the rest of paper, all the integrals refering to x and dx should

be understood as (x1; ; � � � ; xp) and dx1; � � � ; dxp.
2In the sence of Parzen-Rosenblatt see Bosq and Lecoutre (1987).
3Otherwise dF (x) would converge to � � � f(x) instead of its integral.
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the weight WI being :

WI(u;Xi; hn) =

1
n�h

p
n
�

uR
�1

K(
Xi�x

hn
) dx

b'(Xi)
(10)

The properties of this estimator are closely related to those of Mack and Müller estimator, and

will be discused in the next section.

As for derivation, integration on one component, xs of x = (x1; � � � ; xp), may be of interest as we

will see in our application in section 4. The estimator is straightforward, the multivariate kernel

K(
Xi�x

hn
) being simply integrated on that component.

Proposition 2 :

A functional estimator dFpart of f 's integral on one component, say xs for s = 1; � � � ; p, up to a

constant Cs, is the integral of its estimate de�ned by :

dFpart(x1; � � � ; us; � � � ; xp) =
Z

us

�1

d
f(x) dxs +Cs

or

dFpart(x1; � � � ; us; � � � ; xp) =
1

n � h
p
n

�

usZ
�1

nX
i=1

Yib'(Xi)
�K(

Xi � x

hn

) dxs + Cs

=
1

n � h
p

n

nX
i=1

Yib'(Xi)
�

usZ
�1

K(
Xi � x

hn

) dxs + Cs (11)

3 Bandwidth choice

The question of the validity of any nonparametric estimator is often considered in terms of the

bandwidth and the kernel choice. The two most popular choices for kernels, either the gaussian

density or the Epanechnikov kernel, are both easily integrable (at least numerically). We will not

deal with that question here, guessing that the answer may not di�er from the literature on kernels,

see Härdle (1992) or Ullah and Vinod (1993) where it is often said that this choice is much less

important than the bandwidth choice. We will see, however, that the choice of the kernel for deriva-

tion may be somehow linked with the choice of the bandwidth in the factor method developped by

Müller, Stadtmüller, and Schmitt (1987).

The di�culty of the bandwidth selection lies here in the fact that we are interested in the integral

of a function. Hence, any criterion for selecting the bandwidth should incorporate a measure of

distance between F and its estimate bF , while the data available are dealing with f and bf . We may

suggest several options at this stage :
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- A measure-based solution : construct a measure of dF (�)'s accuracy, then �nd a decomposition

of this measure and derive the optimal rate of convergence for the bandwidth. This is the

traditional way of deriving optimal bandwidth. Theoretical asymptotical calculus may lead

either to a "plug-in or a "cross-validation" method. These two options will be discussed in

detail.

- A factor method solution : choose a bandwidth for df(�) (either by plug-in, cross validation,

or any other method) that e�ciently estimates f , and use it, not directly but as a basis for

the bandwidth in d
F (�). That method is directly inspired by the factor method presented in

Müller, Stadtmüller, and Schmitt (1987). It uses the property that there is a connection

between asymptotically optimal bandwidth for the estimator bf and the one used for its �-th

derivative bf� . Estimating the terms linking the bandwidths provides a powerful tool that may

be adapted to our case.

- A data-generating solution : estimate f with a "correct" bandwidth, and generate a pseudo-

sample (potentially large), with df(�). Then use these pseudo-points (Xc; Yc)c=1;���;Nc for esti-

mating F . Because of the size of the pseudo-data sample, which can be as great as desired,

(and also because one may compute uniformly distributed simulated points Xc)
d
F (�) becomes

less sensitive to the bandwidth choice, that choice can be done with a classical rule of thumb.

This solution is a kind of pragmatic way of avoiding problems by using well known tools

adapted to bf even if bF is under study.

The traditional method of assessing the performance of estimators, proposed as a �rst option, is

to consider some sort of error criterion, either pointwise or global. As most applications of function

estimation call for the entire domain, instead of its value at one particular point, we may focus on

global measures only.

The most popular criteria for measuring the accuracy of nonparametric estimator are the In-

tegrated Squared Error de�ned as ISE(h) =
R
(f(x) � d

f(x))
2
dx or its expected value, the Mean

Integrated Squared Error MISE(h) = E[
R
(f(x) � d

f(x))
2
dx]. From these criteria4, one may �nd

some V ariance(h) +Bias(h) expression depending on the bandwidth and on some unknown func-

tional parameters, and therefore derive the optimal rate of convergence for the bandwidth. These

criteria can be applied with (F (x)� d
F(x))

2
, and a "plug-in" method could be implemented. In our

case, the calculus remains undone yet (details may appear in Bontemps (2000)), mainly because of

the technical aspects of these calculus, but also because of the theoretical nature of the results.

The Cross-validation, which is also a popular tool for bandwidth selection, does not apply di-

rectly to our estimator, because the comparison between d
F (Xi) and the data has no sense. However,

4There exist many others like the empirical version of ISE(h), the Average Squared Error, de�ned as ASE(h) =
nP
i=1

�
f(Xi)� df(Xi)

�2
see Marron (1988) or Härdle (1992).
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one may propose a method and a new cross-validation criteria, similar to the one used for estimating

f itself. Following the methodology used in the setting of derivative estimation (see Härdle (1992),

p.160), one may construct a classical leave-one-out estimator d
F (�i)(Xi) :

d
F (�i)(Xi) =

1

n � h
p
n

�

nX
j=1;j 6=i

Yj �WI(Xi;Xj ; hn) (12)

Suppose, for the moment, that we are in the setting of ordered, �xed, equidistant predictor variable�
X(i); Y(i)

�
i=1;���;n

with X(1) � X(2) � � � � � X(n). Instead of comparing this leave-one-out estimator

with the original data, one can construct another error estimator CV I
(h), comparing d

F (�i)(Xi) with

Y
�

(i) = (Y(i) + Y(i�1))
(X(i)�X(i�1))

2
, a naïve estimate5 of the integral at point (X(i); Y(i)). This would

lead to :

CV
I
(h) =

nX
i=1

�
Y
�

(i) �
d
F (�i)(X(i))

�2
� !(X(i)) (13)

where !(X(i)) is a weight function. This criterion has to be examined precisely, this work being

beyond the scope of this paper (details will appear in Bontemps (2000)).

These two methods may be quite useful, but we would like to spend some time on the promising

factor method developed on optimal kernels (see Müller (1984)) and used for derivative estimator

bandwidth choice by Müller, Stadtmüller, and Schmitt (1987) in the case of equally spaced Xi's. Let

f
(�) be the �-derivative of the regression function f . Then compute an appropriate bandwidth for

� = 0, say h0, with an appropriate kernel K0 of order k for the estimator bf = bf (0). This bandwidth
can be used with great accuracy for bf (�) using an appropriate kernel K� of order k. Müller et ali

showed that there is a strong connection between these bandwidths, de�ned as:

h� = d�;k � h0 (14)

In this expression, the constant d�;k is known for various kernel and derivative orders, for exam-

ple, for a kernel of order k = 3, and a �rst order derivation (� = 1), we have d1;3 = 0:7083.

As a result, provided that one uses �adapted� kernels, the bandwidth selection for derivative esti-

mators is reduced to a �classic� problem of bandwidth choice for bf .
A straitforward application of this result may be to use that method for integration : Using

the familly of �adapted� kernels de�ned by Müller (1984) and a �reference� bandwidth h1 for the

�rst-order regression, bf1, (the latter opeation may be done in our case with classic cross-validation

for example), and using the above relation (14), in reverse, gives a good estimation of the optimal

bandwidth, h0, for bF = bf (0).
5This estimation is done using simple trapezoid or midpoint rule for example, see Judd (1998) for details. For

derivative, Härdle used the �rst di�erence of the Y(i)'s :
Y(i)�Y(i�1)

X(i)�X(i�1)
in its criterion.
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4 An application to industrial cost function of water pollution abate-

ment

In this section, we use the methodology presented in section(2) to estimate water pollution abate-

ment cost functions. We use a large database on French industry for the period 1994-96.

4.1 Background

Industrial water pollution in France has been a major concern for the past two decades. Some recent

reports of French Water Agencies have identi�ed industrial pollution as the source of approxima-

tively 50% of organic pollution. For toxic pollution, including heavy metals and some persistent

organic pollution, industry is at the origin of the most part of e�uent emissions. French current

regulatory system is built on a combination of two instruments: emission charges and individual

contracts between polluters and the regulatory agency. Emission taxes are based on e�uent pollu-

tion emissions which correspond to the level of pollution generated by the production process minus

the abated pollution. Table 4.1 presents the evolution for some industrial e�uents during the two

last decades in France.

Table 1: Evolution of industrial pollution 1974-1996

Gross pollution Net pollution Abatement

COD Tox. COD Tox. COD Tox.

(t/day) (K.equ/day) (t/day) (K.equ/day) (t/day) (K.equ/day)

1974 4670 110000 3630 76500 1040 33500

1996 6039 119294 1604 17705 4435 101589

Evolution +29% +8% �56% �77% +326% +203%

COD: Chemical Oxygen Demand.

Tox.: biological measure of e�uents toxicity.

Industrial �rms can abate water pollution by scaling back polluting activities or by diverting

resources to cleanup. In both cases, pollution reduction entails costs. Traditionally, abatement cost

estimates have been based on plant's reported direct costs of setting up and operating pollution

control equipment. Coupled with information about the bene�ts of reducing pollution, such cost

estimates can provide a basis for setting e�cient regulatory schemes, as showed by Thomas (1995)

and McConnell and Schwarz (1992). But the scarcity of appropriate plant-level data often prevents

detailed empirical studies of average and marginal abatements costs of pollution. Moreover, �rms

can adjust to the threat of higher pollution-related costs along many dimensions including new

process technology, pollution control equipment, improved e�ciency. It follows that policy analyses
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have frequently developed abatement estimates from engineering models. However, failure to rely

on behavioral data may led to considerable errors.

As mentioned above, estimates of water pollution cost abatement function are very costly in

terms of data information (input, prices, quantities, technologies). In general, the only thing ob-

served by public authorities is the result of the industrial minimization of costs. The question we are

going to answer can be stated as follows: is it possible to infer from this condition the characteristics

of industrial cost abatement function?

4.2 A simple model of abatement choice by industrials

In order to answer this question, we need to describe abatement choices of a �rm. We consider a

representative �rm with a production process generating a level of gross pollution PG. The repre-

sentative �rm is facing a unit emission tax � . It chooses a level of pollution abatement A 2 [0; PG].

Pollution abatement may be achieved by investing in and by operating an external abatement plant.

It follows that the net pollution taxed by the Water Agency is equal to: PN = PG � A. We �rst

assume that production and abatement process are independent. It is justi�ed by the fact that

abatement costs are small in comparison with production costs. Hence it is likely that emission tax

does no a�ect allocation of inputs in the production process. We assume, next, that the abatement

cost function depends on the gross pollution and the abatement level. Let C and K denote the

variable and �xed cost of abatement process. The pro�t of the �rm in the abatement activity is:

Y
= �(PG �A)� C(PG; A)�K

The representative �rm maximizes his pro�t with respect to A under the constraints A � 0 and

PG �A � 0. For �rms with non-binding constraints, the �rst order condition of this maximization

program is:

@C

@A
(PG; A) = � (15)

We also have some information concerning the unknown function C since for any value of PG :

C(PG; 0) = 0 (16)

Using notations of section 2, this observed marginal condition may be written as Y = f(X)

with Y = � , X = (X
1
; X

2
) = (PG; A) and the unknown function f(:) =

@C

@A
(:).

4.3 Econometric issues: data and estimation
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4.3.1 Data

Data used were made available from the di�erent French Water Agencies: Adour-Garonne, Artois-

Picardie, Loire-Bretagne, Rhin-Meuse, Rhône-Méditerranée-Corse and Seine-Normandie. We use a

sample of 153 plant-level observations.

Table 2: Descriptive statistics

Variable Mean Std Dev. Variance Min. Max.

PG 67706 56337 3173.106 2266 196389

A 45171 48620 2363.106 292 179504

� 0.9678 0.0448 0.0020 0.8800 1.0400

The �le includes yearly information at plant-level on various e�uent emissions, emission charges

and abatements for the 1994-96 period. The Water Agency data set contains levels of e�uent

emissions, both before and after treatment, for �ve categories of pollutants: nitrogen, suspended

solids, chemical oxygen demand, phosphorous and absorbable organic halogens. A price index is

computed as a weighted sum of average emissions charges in order to construct a sixth as an agregate

of the others. The level of pollution abatement is then computed for each �rm as the di�erence

between gross and net e�uent emissions.

4.3.2 Nonparametric estimator

As de�ned in section (2), the estimator for F will be based on a weighted sum of the data (Xi; Yi) pre-

viously introduced. Since p = 2 in this application, we will use a bivariate kernel K(
X

1
i
�x

1

h1n
;
X

2
i
�x

2

h2n
)

de�ned as the product of two univariate kernels with, a priori two di�erent bandwidths, h1 and h2

since the marginal densities of x1 and x
2 may be di�erent.

K(
X

1
i
� x

1

h1n

;
X

2
i
� x

2

h2n

) = K(
X

1
i
� x

1

h1n

) �K(
X

2
i
� x

2

h2n

)

The bivariate version of Mack and Müller estimator is :

bfMM (x
1
; x

2
) =

1

n � h1h2
�

nX
i=1

Yi �

K

�
X

1
i
�x

1

h1n

�
�K

�
X

2
i
�x

2

h2n

�
1

n�h1h2
�

nP
j=1

K(
X

1
j
�X

1
i

h1n
) �K(

X
2
j
�X

2
i

h2n
)

=
1

n � h
p

n

�

nX
i=1

Yib'(X1
i
) b'(X2

i
)
�K

�
X

1
i
� x

1

h1n

�
�K

�
X

2
i
� x

2

h2n

�

For the purpose of the proposed application, we are interested in the integral relative to only one

component, the abated pollution, A, denoted here by x2. We will therefore use a partial integration
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relative on the variable x2, as de�ned by the �rst-order equation (15). According to proposition (2)

the integration estimator, denoted bF2(�), is:

bF2(x
1
; u

2
) =

1

n � h
p
n

�

nX
i=1

Yib'(X1
i
) b'(X2

i
)
�K

�
X

1
i
� x

1

h1
n

�
�

u
2Z

�1

K

�
X

2
i
� x

2

h2
n

�
dx

2
+ C2 (17)

Since we have some information on the unknown fonction F (equation 16), we can estimate the

constant C2 by adjusting the estimator bF2(�) in that point, therefore C2 must satisfy6 :

bF2(x
1
; 0) = 0

so

C2 = �
1

n � h
p

n

�

nX
i=1

Yib'(X1
i
) b'(X2

i
)
�K

�
X

1
i
� x

1

h1n

�
�

0Z
�1

K

�
X

2
i
� x

2

h2n

�
dx2

As we mentioned in section (3), we have to choose a kernel and the bandwidth for the estimation.

We must say here that we have not followed the recommendations we made. Using a kernel of order

(1) as de�ned by Müller (84) for bf and of order 0 for bF2 would have been more clever and could have

reduced our bandwidth choice. However this method has not been de�ned nor tested for random

predictor variable, and some work has to be done before using it in our framework. The plug-in and

the cross validation method are also under study and are not operational yet.

So, we have used a traditional bivariate gaussian kernel while the banwidths for bF2 have been chosen

in two steps ; �rst we have estimated the cross-validated bandwidths for bf , then we have constructed

a grid of simulated points (Xc; Yc)c=1;���;Nc . Since the estimator bF2 applied to this pseudo-sample

has revealed to be very insensitive to bandwidths, we have applied an ad-hoc bandwidth choosen

by a classic rule of thumb. As we will see in the next section the results are quite promising.

4.4 Results of estimations

4.4.1 The marginal cost function

The economic theory suggests that use of marked-based instruments, such as e�uent charges, allows

to realize signi�cant e�ciency gains by confronting polluters to the price of polluting at the margin.

But the theory says nothing about the actual magnitude of variations in marginal abatement costs.

In practise, these have to be large enough to convince policy makers that the e�ciency bene�ts

of market-based instrument will outweight the cost of the transition to a new regulatory regime.

Figure 1 presents an estimation of the marginal abatement cost function based on a sample of 153

industrial observed from 1994 to 1996.

6More precisely we should use cC2 instead of C2 since the latter constant is estimated.
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Figure 1: Estimation of the marginal abatement cost function bc(PG; A) = @C

@A
(PG; A).

This graphic clearly highlights the variability in marginal abatement costs. Marginal abatement

cost of pollution exhibits very large di�erences by scale and degree of abatement. For example, given

a small level of abatement, the higher is the gross pollution, the smaller is the marginal abatement

cost.

4.4.2 The cost function

Figure 2 presents an estimation of the abatement cost function based. It gives for every level of

gross pollution the cost of depollution depending upon the level of abatement. This estimate allows

in particular to analyse the e�ects of setting up e�uent standards on abatement costs. The shape

of this function is in accordance with the results obtained by Thomas (1995) and McConnell and

Schwarz (1992) where parametric speci�cations of the cost function were done. A more detailed

analysis of these results have to be done in the next future. Specially, we have used all the data

available, while separate estimations of cost functions on subsets (depending on the level of e�uent

emissions, or on the industry), an therefore a comparison of these cost functions, would be very

interesting.
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Figure 2: Estimation of the abatement cost function bC(PG; A).

5 Conclusion

In this paper, we propose a nonparametric kernel method to estimate the integral of unknown,

unspeci�ed regression functions, built on Mack and Müller's kernel estimator (89). The latter

estimator, which was designed for estimating derivatives of regression functions, is simply integrated.

The estimator we propose for the integral of regression functions is simply the integral of Mack and

Müller estimator. Our estimator is therefore very simple and easy to compute. The bandwidth

choice for this estimator is crucial, and has been studied in details. The question of the error

criterion used for the selection is still a main issue and has led to di�erent bandwidth selection

procedures (either plug-in or cross-validation). We have discussed several options on that problem

and linked it to its related problem of derivative estimators bandwidth choice. The work already

done in that �eld may be quite useful and has be examined. A factor method based on the work

of Müller, Stadtmüller, and Schmitt (1987) has been proposed. It uses the result that there is a

connection between asymptotically optimal bandwidth for a kernel estimator and the ones used for

its derivatives.

As an application of the estimator proposed, we provided a numerical example in the �eld of

production analysis. We have estimated the pollution abatement cost function on a sample of French
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�rms. This empirical example shows, in practice, how to obtain the estimation of a cost function

from data on marginal abatement costs.

We may propose several extensions to this paper either from a methodological point of view or

for applied work in the �eld of our speci�c application.

Despite its simplicity, the estimator properties have not been discussed in detail, we will derive

its statistical properties soon. This work may lead to improvement, specially on the choice and rel-

ative speed of convergence for the two bandwidths involved in our estimator: one for the numerator

and one for the marginal density estimator (denominator). The three methods proposed for band-

width selection (plug-in, cross-validation, and the factor method) have also to be developped more

precisely for our integration estimator. Their statistical properties must be properly caracterized,

and simulations have to be done before being fully operational.

It would also be interesting to compare the results done here on the estimation of the abatement

cost function, with those presented in Thomas (1995). Such a �parametric versus nonparametric �

comparison of cost functions may reveal important features on the impact of parametric speci�ca-

tions of �rst order relationships. A possible extension would be to use this nonparametric framework

for testing speci�cation (or misspeci�cation) of objective functions in economic optimization proce-

dures.
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A Appendix

An algorithm to compute d
F (x).

This algorithm has a O(n
2
) complexity but can be ran on parallel.

Let �(Xi; u; hn) =

uR
�1

K(
Xi�x

hn
) dx be the kernel integral.

The algoritm can be easily implemented as follow :

- Generate the vector (Xc)c=1;���;Nc of the Nc points where you want F (Xc) to be computed

- For i = 1; � � � ; n, compute the density estimation at the sample points d
'(Xi)

- De�ne the new vector Vi =
Yid'(Xi)

- Create the weight matrix Wi;c =

�
�(Xi;Xc; hn)

�
c=1;���;Nc

i=1;���;n

- The matrix product Yc = Wi;c � Vi gives the vector of all F (xc) = Yc.
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