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1. Introduction

Irrigation is a high-volume user of water.1 Irrigated agriculture accounts for a large
proportion of water use, especially in many water-scarce areas. Imbalances be-
tween water needs and resources are likely to induce conflicts between different
categories of users (rural, urban, industrial and other users). In these situations, as
water becomes scarce,2 policymakers attempt to induce farmers to reduce water
consumption by implementing economic tools such as quotas or water pricing.
Recent reforms on water policies have been implemented (cf. Dinar, 2000) to make
farmers increasingly responsible for water conservation. The final result would lead
to force all water users to pay the water at its value. Under scarcity, understanding
the influence of water price on water-concerned activity is a key contribution to
policy analysis. This knowledge, which is the starting point to define water pricing,
is inherent to the estimation of the water demand.

As in most other regions and countries, farmers in France are charged for wa-
ter. The fees are fixed at low levels and do not make farmers responsible for the
costs they impose on water supplies. Moreover the knowledge of farmers water
consumption remains unprecise. In this context, estimating farmers water demand
is difficult and several questions are still unanswered.

There is an important literature assessing how farmers react to changes in the
price of water using either econometric models or programming models. These
two approaches on irrigation water demand estimation use different techniques,
different data and lead to various results.

1.1. STATISTICAL ESTIMATION OF DERIVED DEMAND FOR IRRIGATION

WATER

Irrigation water demand estimates relying on actual farmer behavior are usally
based on cross-sectional water use data (Ogg and Gollehon, 1989). These esti-
mations have commonly used dual input demand specifications (Moore and Negri,
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1992; Moore et al., 1994a, 1994b; Hassine and Thomas, 1997). They represent
farmers as a multicrop production firm taking decisions concerning crop choices,
crop-level allocations of land in a long-run setting, and water use quantities in the
short-run. These studies suggest that water irrigations are unresponsive to change in
prices. The inelasticity of irrigation water demand provided by econometric models
may be due to the lack of data on crop-level water use. Moreover these works do
not use an acreage-based model or a fixed allocatable input model of water use that
could better explain short-run decisions.

1.2. DERIVED DEMANDS FROM PROGRAMMING MODEL

The absence of observations on water consumptions has induced the use of math-
ematical programming approaches for the estimation of the derived demand for
water. Demand estimates have been derived from ‘shadow prices’ obtained by
computer simulations of profit maximizing behavior. Many of these program-
ming studies use linear programming (Shunway, 1973) or quadratic programming
(Howitt et al., 1980). Irrigation demand curve estimates were found to be sig-
nificatively elastic. These approaches conclude that irrigation water demand is
completely inelastic below a threshold price, and elastic beyond (Montginoul and
Rieu, 1996; Garrido et al., 1997; Varela-Ortega et al., 1998; Iglesias et al., 1998).

The programming method studies are based on the following scheme. For a
given price, one estimates the quantity of water maximizing the farmer’s profit.
Variations in water prices induce different levels of optimal water quantities. The
authors use these informations directly to represent the derived demand for irri-
gation water. Several assumptions are made concerning the crop yield response
function to irrigation water. A major critic is that these pre-specified functions
may not precisely represent the biological and physical process of plant growth.
Another drawback is that these models ignore the impact of multiple applications
of the water for each crop and give more emphasis on crop pattern shifts.

This chapter aims at proposing a methodology to estimate irrigation water de-
mand using programming methods. Our approach is however different from the
existing works and is based on the evaluation of the farmer’s value for water. Since
markets for water do not exist in France it is not simple to determine this value.
The first difference with the existing works concerns the definition of the farmer’s
value for water. We define it as the maximum amount of money the farmer would
be willing to pay for the use of the resource. Another major difference concerns the
production function used in the estimation. Inhere, we do not specify that function
and use a crop-growth simulation model, which gives precise results concerning
water-yield relations.

The procedure we propose is a two-stage method composed of a model of
farmer behavior description and optimization, followed by an estimation pro-
cedure, the latter being chosed to be nonparametric here. First, using a primal
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optimization approach as modeling framework, we describe the program of the
farmer. This one must allocate a limited water supply over an irrigation season in
order to maximize his profit evaluated at the harvesting of the crop. We propose a
numerical method for obtaining solutions to this problem based on an optimization
algorithm. This algorithm integrates the agronomic model, EPIC-PHASE3 (Ca-
belguenne and Debaeke, 1995), an economic model, and an algorithm of search
of the optimum. This numerical procedure is used for different weather conditions,
and for several total water quantities available for irrigation. It generates a database
composed of levels of quotas and the associated maximized profits. Second, using
this database and nonparametric methods, we estimate the maximized profit func-
tions. The irrigation water demand functions are also estimated by a nonparametric
derivation procedure.

This methodology is applied to estimate water irrigation demand in the South-
western of France. Our results show that the irrigation water demand functions are
decreasing, nonlinear, and strongly depend on weather conditions. These functions
can be decomposed into several areas. Irrigation water demand is inelastic for low
water prices; and becomes more elastic as prices increase. The price levels at which
the changes in responsiveness to prices appear depend on climates and vary around
0.30 F/m3 for wet weather conditions up to roughly 1.60 F/m3 for a dry year. These
informations are a decisive contribution for defining water pricing policies when
water scarcity becomes a leading issue.

The chapter is structured in the following manner. Section 2 describes the
methodology for evaluating irrigation water demand function. First, we describe
the theoritical method for calculating demand functions; second, the numerical
approach to estimate irrigation water demand is presented. Section 3 develops the
empirical specification of the model used to estimate a specific regional-dependent
water demand and reports the empirical results. We conclude in Section 4.

2. Methodology

2.1. DEMAND FUNCTION CALCULATIONS

The calculations of the water demand of the farmer are based on the evaluation of
the farmer’s value for water under water scarcity. The water demand functions are
derived from the dynamic model of the farmer’s decisions.

2.1.1. Analytical Model
Consider a farmer facing a sequential decision problem of irrigation scheduling on
a calendar 1, . . . , T with T − 1 decision dates. At date 1, the farmer knows the
water quota available for the season, Q, the initial water stock in soil, V̄ , and the
state of crop biomass, M̄ . At each decision date, the farmer has to irrigate,4 using
a quantity of water denoted qt .
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The dynamics of the three state variables respectively are the following: for
t = 1, . . . , T − 1,

Mt+1 −Mt = ft(Mt, Vt), (1)

Vt+1 − Vt = gt(Mt , Vt , qt ), (2)

Qt+1 −Qt = −qt . (3)

The change in the level of the biomass at any date (Equation (2)) is a function
(ft) of current date biomass and water stock in soil. The change in water stock in
soil (Equation (3)) depends on the same state variables and on the decision taken
at the current date. The quota has a simple decreasing dynamic (Equation (3)).

There exists technical constraint on irrigation represented by the following
equation:

q ≤ qt ≤ q̄ for qt > 0. (4)

The final date (t = T ) corresponds to harvesting when actual crop yield be-
comes known. Let Y (·) denote the crop yield function; that quantity depends only
on the final biomass at date T and is denoted Y (MT ).

The profit per hectare of the farmer can be written as:

� = r · Y (MT )− CFT −
T−1∑
t=1

(c · qt + δt · CF), (5)

where r denotes output price; CFT denotes fixed production costs; c is water price;
δt is a dummy variable taking the value 1 if the farmer irrigates and 0 if not. CF
represents fixed costs; these costs appear since the farmer is facing labour and
energy costs for each watering.

The farmer sequential problem is the following:

Max
{qt }t=1,...,T−1

r · Y (MT )− CFT −
T−1∑
t=1

(c · qt + δt · CF) (6)

s/c

{
Mt+1 −Mt = ft(Mt, Vt),

Vt+1 − Vt = gt (Mt, Vt , qt ),
(7)

and s/c



Qt+1 −Qt = −qt ,
δt =

{
0 if qt = 0,
1 if qt > 0,

q ≤ qt ≤ q̄ for qt > 0,

Mt ≥ 0, Vt ≥ 0, Qt ≥ 0,

M1 = M̄, V1 = V̄ , Q1 = Q.

(8)
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The constraints (7) are the main dynamics while (8) are technical, and physical
constraints. This problem is purely analytical here and the functions ft and gt
are unknown. We will however solve it in the next section using an agronomical
simulation tool and an optimization procedure.

The solution of this program is the optimal sequence of decisions:

q∗(Q) = {q∗
t }t=1,...,T−1. (9)

This sequence strongly depends on the quantity of water available for irrigation,
Q.

Using (9) and (5), we obtain the optimized profit function depending on Q as
follows:

�∗(Q) = r · Y ∗(MT )− CFT −
T−1∑
t=1

(c · q∗
t (Q)+ δ∗t · CF ). (10)

2.1.2. Definition of the Value of Water
Under limited water supply, the value of water as an economic good is the amount
of money the farmer is willing to pay for it. Like any other good, water will be used
by farmers as long as the benefits from the use of an additional unit of ressource ex-
ceed its cost. As water becomes scarce, the farmer value of water becomes greater
than the real water price. In other words, the marginal profit dπ/dQ is greater than
the water charge c and therefore the farmer is willing to consume more water.

For a given Q, we define the ‘water value’ as the maximum amount of money
the farmer would be ready to pay for the use of one additionnal unit of the
ressource. This ‘opportunity’ cost, noted λ(Q), is defined as the derivative of the
optimized profit function:

λ(Q) = d�∗(Q)
dQ

(11)

evaluated for the given quota.
The knowledge of λ(Q) for any value of the quota Q gives the ‘willingness

to pay’ function of the farmer. This function, usually noted p(Q), is the inverse
of the ‘irrigation water derived demand’ function, noted by Q(p) where p is the
irrigation water pricing. Therefore, the irrigation water derived demand function is
completely determined once its inverse, the willingness to pay is known.

2.2. DEMAND FUNCTION ESTIMATION

In order to estimate demand function, initially it is necessary to have data relating
to quotas and associated maximized profits, and secondly to define an estimation
procedure.
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Figure 1. Numerical procedure of resolution.

2.2.1. Data Generation
We generate data composed of maximized profits and quotas by solving the se-
quential decision model described in Section 2.1.1. We will present only a brief
description of numerical resolution procedure of this problem here; a detailed de-
scription of the sequential decision model can be found in Bontemps and Couture
(2001) or Couture (2000a).

Figure 1 shows the numerical procedure integrating the agronomical model,
EPIC-PHASE, an economic model, and an algorithm of search of the solution.
To simplify the presentation of the numerical framework, we consider the case
of known weather conditions and for a given quota. The agronomical model,
EPIC-PHASE, was used to generate informations relative to the state variables
(previously represented by the transition functions ft and gt ), and to determine
crop yield for various irrigation schedules. Given the prices of inputs and output,
the economic model uses the yield predictions from the plant-growth simulation
model, and evaluates the profit for each decision sequence. Finally the algorithm
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of search identifies the optimal decision path by examining exhaustively the set of
all simulated profits.5 Then the maximized profit,�∗, is obtained. By repeating this
procedure for different levels of quotas and then for different weather conditions,
we obtain a database on which we base our estimation procedure.

2.2.2. Nonparametric Estimation
In order to estimate the water value, it is necessary to estimate first the optimized
profit function and its derivative. We chosed a widely used nonparametric kernel
estimator (Pagan and Ullah, 1999), to estimate profit function and demand
function. A major advantage of nonparametric method is that it allows to estimate
an unknown function without assuming its form. Estimation is only based on
observed data and is very powerful. In the past decades several nonparametric
estimators have been developed (Härdle, 1990), they are all based on a weighted
sum of functions of the data.

• Profit function estimation
Using (10), the estimation of the optimized profit function lies on the set of
simulated data (Qi,�∗

i )i=1,...,n obtained by the numerical model. The unknown
function, �∗(·), is ponctually estimated on these n couples (Qi,�∗

i ). The kernel
estimator of profit function evaluated for any value of Q, is a weighted sum of
the observed responses Qi , the weight being a continuous function of observed
quantities, Qi , and evaluation point Q. It is defined as:

π̂∗(Q) =
∑n
i=1�

∗
i ·K

(
Qi−Q
h

)
∑n
i=1K

(
Qi−Q
h

) ∀Q ∈ R, (12)

where K(·) is a kernel function, continuously differentiable. We use a Gaussian
kernel function among existing kernel functions.6 Note that π̂∗(Q) will inherit all
the continuity and differentiability properties of K. Therefore π̂∗(Q) is continuous
and differentiable. The bandwidth, noted h, determines the degree of smoothness
of π̂∗(Q); its choice will be discussed latter in this section.

• Demand function estimation
In order to estimate the demand function, we will use the property that the profit
function estimator is differentiable. If the estimate π̂∗(Q) properly reflects the
profit function, �∗(Q), then the estimate of the profit function derivative is equal
to the derivative of the estimate of the profit function (Härdle, 1990). Therefore a
derivation of (12) with respect toQ will give an estimator of the demand function.7
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In other words, the estimator ∂̂π∗/∂Q(·) of ∂�∗/∂Q(·) is just the derivative of
the estimator π̂∗(·). More precisely:

∂̂π∗

∂Q
(Q) = ∂

∂Q

∑n
i=1�

∗
i ·K

(
Qi−Q
h

)
∑n
i=1K

(
Qi−Q
h

)
 ∀Q ∈ R. (13)

This can be rewritten as:

∂̂π∗

∂Q
(Q) = 1(∑n

i=1K
(
Qi−Q
h

))2

·
(

−
(

n∑
i=1

�∗
i · 1

h
·K ′

(
Qi −Q
h

))
·
(

n∑
i=1

K

(
Qi −Q
h

))

+
(

n∑
i=1

�∗
i ·K

(
Qi −Q
h

))
·
(

n∑
i=1

1

h
·K ′

(
Qi −Q
h

)))
.

The estimator ∂̂π∗/∂Q(Q) is also continuously differentiable because it
incorporates the kernel function K(·) and its derivative K ′(·).

• Smoothing parameter selection
Choosing the bandwidth, h, is always a crucial problem. If h is small, then we get
an interpolation of the data. On the other hand, if h is high, then the estimator is
a constant function that assigns the sample mean to each point. There exist sev-
eral approaches to bandwidth selection (Vieu, 1993) using theorical considerations
(plug-in method) or based-data method (cross-validation method).

A feature of these approaches is that the selected bandwidth is not fully adapted,
particularly if the number of observations is small. We use as a benchmark the
value obtained by cross-validation. The aim of this method is to choose a value
for h minimizing the cross-validation criterion, defined as a sum of distances
between the estimator π̂∗(·) evaluated at Qi and the real data observed �∗

i . We
denote the bandwidth selected by the cross-validation criterion by h∗. In practice,
a refinement consists in using a slightly smaller bandwidth than h∗ in order to limit
oversmoothing.

Following Härdle (1990), the smoothing parameter selected for demand func-
tion estimator is the same that the one choosed for profit function estimator, even
if this argument may be discussed.
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Table 1. ��Caption?��. Source: ITCF (1998); Michalland (1995) and Couture (2000a).

Year Output price Water price Fixed Cost per irrigation Fixed cost
r (Francs/Tonne) c (Francs/m3) CF (Francs) CFT (Francs)

1989 1049 0.25 150 2150

1991 1038 0.25 150 2150

1993 778 0.25 150 2150

3. An Application in the South-West of France

The procedure for demand function determination was applied using data prevail-
ing in the area of the South-West of France. In this area, agriculture is the largest
water consumer with 2/3 of total water consumption. During low river flow periods
there is a strong competition on water with urban and industrial uses. In this area,
irrigated agriculture is quite recent and concerns a large part of crops such as corn.
Irrigation needs depend strongly on weather conditions. Irrigation water was drawn
from rivers supplied by mountain reservoirs. The irrigation tools used in the South-
West of France are generally sprinkler systems. The reference crop is corn because
it remains the main irrigated crop in this area.

3.1. DATA

A first set of data is required by the crop growth simulator model. This data
set includes weather, soil, technical and irrigation practices, and crop data. The
daily weather input file was developed from data collected at the INRA station
in Toulouse, for a 14-year series (1983–1996). The soil caracteristic data were
included in the crop growth model. The soil is clayey and chalky.

Economic output and input price data are included as a secondary data set,
see Table 1. Output prices are farm-level producer prices. Input prices include
irrigation variable costs and fixed costs by watering, and other fixed production
costs. The fixed cost, (CF ), per irrigation includes energy and labour costs. The
fixed production costs, (CFT ), are composed of fertilizer, nitrate, seed, and hail
insurance costs.

3.2. ESTIMATION RESULTS

We have allowed the quota of available water for irrigation to vary8 between 0
and 4500 m3 per hectare. In order to account for weather variability, we have run
the model over 14 years available, but we have restricted our attention for three
climates : a ‘dry’ year (1989), a ‘medium’ year (1991) and a ‘wet’ year (1993).
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Figure 2. Profits functions for ‘dry’, ‘medium’ and ‘wet’ year.
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Figure 2 shows the estimation of the maximized profit functions. These estima-
tions are presented for each year considered in our study. Note that these estimated
profit functions have the same trend; they increase to reach a peak that depends on
weather conditions, and then remain constant at a maximum level.

This trend is due to the yield-water relation; from the agronomic knowledge
we know that plant yield increases as water quantity increases below some max-
imum value, then the yield decreases while increasing water quantities (Hexem
and Heady, 1978). The estimated profit functions have some similarity with yield-
water functions except when water is no more a limiting factor; in this case, the
profit remains constant. The maximum profits vary with weather conditions (they
reach roughly 10500, 8400, and 6200 Francs per hectare for dry, medium and wet
climates respectively), and are obtained for various quantities depending on the
weather (these quantities are 2900, 1700, and 1350 m3 per hectare for dry, medium,
and wet weathers respectively).

The demand function estimations are directly derived from the estimated profit
functions, as shown in Figure 3.

The results of the demand estimates in Figure 4 show clear differences in water
demand for the three weather conditions. The drier the weather, the greater the
irrigation water demand. However these curves present the same shape and trends.
These three demand functions are decreasing and nonlinear.

Water prices being set at the range of 0.6 to 2.61 F/m3, depending on weather
conditions, induce a null water demand. From the water quantity available equal
to 2900 m3 per hectare in dry year, to 1700 m3 per hectare in average year, and
to 1350 m3 per hectare, it is not in the farmer’s interest to irrigate. The differ-
ences between these maximum quantities can be very important. Note that this
water quantity increases twofold from the wet year to the dry one. These differ-
ences are due to precipitations.9 Water demand will be all the more high so since
precipitations will be low.

Another interesting feature is that the estimated water demand functions have
inflexion points and can be decomposed into areas. At low water prices, irrigation
water demand seems to be inelastic. On the other hand, demand appears more
and more elastic as price increases. The price levels at which the changes in
price-responsiveness appears depend on weather conditions and are ranging from
0.30 F/m3 in wet year to 1.60 F/m3 in dry year. Up to these prices the variations in
water consumptions with respect to the change in prices appear quite significant.
These results are confirmed by existing studies using programming methods in the
literature on irrigation water demand (Montginoul and Rieu, 1996; Iglesias et al.,
1998; Varela-Ortega et al., 1998).

The knowledge of the price thresolds provides crucial information for the pol-
icymaker in order to initiate a water pricing reform. The response to price signals
in water saving strategies depends on climate conditions. For example, an increase
of price in the range of 0 to 0.9 F/m3 may not produce a significative reduction of
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Figure 3. Profit and demand function for the ‘dry’ year (1989).

water consumption according to weather conditions; in a dry year, the consumption
of water is not modified whereas under wet year, water demand becomes null. This
aspect needs to be integrated in defining water pricing. If water savings are the
policy objective, water prices need to be set at sufficiently high levels.

4. Conclusion

Our paper presents a methodology for evaluating irrigation water demand based
on the evaluation of the farmer’s willingness to pay for having one additional unit
of water. Demand functions are obtained through a sequential making-decision
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Figure 4. Demand functions for ‘dry’, ‘medium’ and ‘wet’ year.

program. The estimation procedure is based on data generated by a numerical
method integrating a crop-growth model, an optimization procedure linked to a
economic model, and nonparametric methods.

This method is applied to used to estimate demand functions for data prevailing
in the South-West of France. We represent these functions for three representative
climatic years. We show that irrigation water demands strongly depend on weather
conditions, but have the same shape: they are decreasing and nonlinear. We can
decompose each of them into two major areas: water demand is inelastic at low
water prices and then becomes responsive to water prices up to some price level.
The price levels at which water demand appears elastic depend on climates and
vary around 0.30 F/m3 for wet weather conditions up to roughy 1.60 F/m3 for a dry
year. Water policies have to include this information for defining pricing schemes
taking into account climate.

Our method can also be used in a broader framework where the weather is
unknown and the farmer decision process is stochastic. As time goes by, the farmer
observes the climate and integrates this information in his decision process. The
complexity of the resolution procedure is increased, but the method remains valid
and operational. The demand function under stochastic condition can therefore
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be estimated (Bontemps and Couture, 2001) and the value of the information be
quantified during the irrigation season (Couture, 2000a, 2000b).

Another natural extension concerns the problem of on-farm irrigation schedul-
ing in order to take into account competition for water between crops. Using
the proposed method, on-farm water demand function may be estimated in the
same way. Due to the probable complexity of any on-farm model, some advanced
numerical tools, such as genetic algorithm (Goldberg, 1989), may be needed.

Notes

1 During summer, irrigated agriculture represents 80% of total water consumption in France.
2 This problem has been mentioned by economists a long time ago, the first volume of the

American Economic Review in 1911 contains a paper on this problem (Coman, 1911).
3 This model is included as a yield-water response function in order to represent the production

function. EPIC-PHASE is a crop growth simulator model.
4 If the farmer does not irrigate, then qt = 0.
5 The set of constraints defined by (8) reduces the space of available irrigation schedules. There-

fore the problem may be solved using an algorithm of search on all possible cases. Otherwise, we
would have be obliged to use a global optimization program such as Genetic Algorithm (Goldberg,
1989), to find the optimal schedule.

6 Estimations based on Epanechnikov kernel slightly differ from the Gaussian kernel estimator.
7 Note that the Mack and Müller’s estimator (1989) is easier to use for derivation since it has a

denominator which does not depend on the derivative variable (Q here). Since the derivation calculus
are quite obvious in our case, we have used the ‘classic’ kernel estimator, but we suggest to use this
estimator for advanced derivation estimation.

8 We have ran the simulation for only 19 value of quotas, mainly because the computation time
for the agronomic model and the optimization procedure was important.

9 The annual precipitations are 402.5 mm for 1989; 676.5 mm for 1991; 901.5 mm for 1993, in
the considered area.
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