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Abstract

This paper deals with the problem of estimating irrigation water demand. We propose an

original method of estimation in two steps. First, we develop a dynamic programming model in

order to explain the optimal irrigation management plan. Based on a microeconomic approach

describing the farmer's behavior, this economic model, introducing an agronomic model, and

an algorithm of solution search, is used to compute a realistic database. Second, these data are

used to estimate pro�t functions by a nonparametric method. The irrigation water demand

function is estimated using a nonparametric derivation procedure.

An application to irrigation water demand is proposed in the southwestern area of France

where con�icts appear frequently. The same results appear for di�erent climates: for small

quantity of water available, irrigation water demand seems to be quite inelastic. If one in-

creases the total quantity of water available, the shape of the curve changes and the demand

appears more elastic. The treshold price at which the changes in price-responsiveness appears

depends on weather conditions and are ranging from 0.30 F=m3 in wet year to 1.60 F=m3 in

dry year. These results are crucial information for the regulator in order to analyze the e�ects

of a water regulation policy based on prices. The impact of an increase in the water price will

depend not only on the climate but also on the location of the initial and �nal prices on the

demand function.
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1 Introduction

Irrigation is a high-volume user of water1. Irrigated agriculture accounts for a large propor-

tion of water use, especially in many water-scarce areas. Imbalances between water needs

and resources are likely to induce con�icts between di�erent categories of users (rural, urban,

industrial and other users). In these situations, as water becomes scarce, policymakers at-

tempt to induce farmers to reduce water consumption by implementing economic tools such

as quotas or water pricing2. Recent reforms on water policies have been implemented (cf

Dinar [8]) to make farmers increasingly responsible for water conservation. The �nal result

would lead to force all water users to pay the water at its value. Under scarcity, understand-

ing the in�uence of water price on water-concerned activity is a key contribution to policy

analysis. This knowledge, which is the starting point to de�ne water pricing, is inherent to

the estimation of the water demand.

As in most other regions and countries, farmers in France are charged for water. The

fees are �xed at low levels and do not make farmers responsible for the costs they impose on

water supplies. Moreover the knowledge of farmers water consumption remains imprecise.

In this context, estimating farmers water demand is di�cult and several questions are still

unanswered.

There is an important literature assessing how farmers react to changes in the price of

water using either econometric models or programming models. These two approaches on

irrigation water demand estimation use di�erent techniques, di�erent data and lead to vari-

ous results.

Statistical estimation of derived demand for irrigation water

Irrigation water demand estimates relying on actual farmer behavior are usually based on

cross-sectional water use data (Ogg and Gollehon [24]). These estimations have commonly

used dual input demand speci�cations (Moore and Negri [21]; Moore et al. [22] and [23];

Hassine and Thomas [13]). In these papers, farmers are represented as multicrop production

�rms taking decisions concerning crop choices, crop-level allocations of land in a long-run

1During summer, irrigated agriculture represents 80 % of total water consumption in France.
2This problem has been mentioned by economists a long time ago; the �rst volume of the American

Economic Review in 1911 contains a paper on this problem (Coman [5]).
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setting, and water use quantities in the short-run. These studies suggest that water irri-

gations are unresponsive to change in prices. The inelasticity of irrigation water demand

provided by econometric models may be due to the lack of data on crop-level water use.

Moreover these works do not use an acreage-based model or a �xed allocatable input model

of water use that could better explain short-run decisions.

Derived demands from programming model

The absence of observations on water consumption has induced the use of mathemati-

cal programming approaches for the estimation of the derived demand for water. Demand

estimates have been derived from shadow prices obtained by computer simulations of pro�t

maximizing behavior. Many of these programming studies use linear programming (Shunway

[26]) or quadratic programming (Howitt et al. [15]). Irrigation demand curve estimates were

found to be signi�catively elastic. These approaches conclude that irrigation water demand

is completely inelastic below a threshold price, and elastic beyond (Montginoul and Rieu

[20]; Garrido et al. [10]; Varela-Ortega et al. [28]; Iglesias et al. [16]).

The programming method studies are based on the following scheme. For a given price,

one estimates the quantity of water maximizing the farmer's pro�t. Variations in water

prices induce di�erent levels of optimal water quantities. The authors use these informa-

tions directly to represent the derived demand for irrigation water. Several assumptions are

made concerning the crop yield response function to irrigation water. A major critic is that

these pre-speci�ed functions may not precisely represent the biological and physical process

of plant growth. Another drawback is that these models ignore the impact of the timing for

multiple applications of the water for each crop, and give more emphasis on crop pattern

shifts.

This paper aims at proposing a methodology to estimate irrigation water demand using

programming methods. Our approach is based on the evaluation of the farmer's value for

water. Since markets for water do not exist in France it is not simple to determine this

value. We de�ne it as the maximum amount of money the farmer would be willing to pay

for the use of the resource. Another major di�erence with the existing works concerns the

production function used in the estimation. Here, we do not specify that function and use a

crop-growth simulation model, which gives precise results concerning water-yield relations.
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The procedure we propose is a two-stage method composed of a model of farmer behavior

description and optimization, followed by an estimation procedure, the latter being chosen

to be nonparametric. First, we describe the farmer's decision program. He has to allocate

a limited water supply during an irrigation season and maximize his pro�t evaluated at the

harvest. We propose a numerical method for obtaining solutions to this problem based on

an optimization algorithm. This algorithm integrates the agronomic model, EPIC-PHASE3

(Cabelguenne et al. [4]), an economic model, and an algorithm of search of the optimum.

This numerical procedure is used for di�erent weather conditions, and for several total water

quantities available for irrigation. It generates a database composed of levels of total avail-

able quantity of water and the associated maximized pro�ts. Second, using this database

and nonparametric methods, we estimate the maximized pro�t functions. The irrigation

water demand functions are also estimated by a nonparametric derivation procedure.

This methodology is applied to estimate water irrigation demand in the South-west of

France. Our results show that the irrigation water demand functions are decreasing, nonlin-

ear, and strongly depend on weather conditions. These functions can be decomposed into

several areas. Irrigation water demand is inelastic for a small available quantity of water ;

and becomes more elastic as the total water available increases. The price levels at which the

changes in responsiveness to prices appear depend on climates and vary around 0.30 F=m3

for wet weather conditions up to roughly 1.60 F=m3 for a dry year. These informations

are a decisive contribution for de�ning water pricing policies when water scarcity becomes a

leading issue.

The paper is structured in the following manner. Section 2 describes the methodology for

evaluating irrigation water demand function. First, we describe the theoretical method for

calculating demand functions; second, the numerical approach to estimate irrigation water

demand is presented. Section 3 develops the empirical speci�cation of the model used to

estimate a speci�c regional-dependent water demand and reports the empirical results. We

conclude the paper in section 4.

3This model is included as a yield-water response function in order to represent the production function.

EPIC-PHASE is a crop growth simulator model.
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2 Methodology

2.1 Demand function calculations

The calculations of the water demand of the farmer are based on the evaluation of the

farmer's value for water under water scarcity. The water demand functions are derived from

the dynamic model of the farmer's decisions.

2.1.1 Analytical model

Consider a risk-neutral farmer facing a sequential decision problem of irrigation scheduling

on a calendar 1; :::; T with T � 1 decision dates. At date 1, the farmer knows perfectly the

total water quantity available for the season, Q, the initial water stock in soil, �V , and the

state of crop biomass, �M . At each decision date, the farmer has to irrigate, using a quantity

of water denoted qt. If the farmer does not irrigate, then qt = 0.

The dynamics of the three state variables respectively are the following: for t =

1; :::; T � 1,

Mt+1 �Mt = ft(Mt; Vt) (1)

Vt+1 � Vt = gt(Mt; Vt; qt) (2)

Qt+1 �Qt = �qt (3)

The change in the level of the biomass at any date (equation 1) is a function (ft) of

current date biomass and water stock in soil. The change in water stock in soil (equation

2) depends on the same state variables and on the decision taken at the current date. The

total quantity of water has a simple decreasing dynamic (equation 3).

There exists technical constraint on irrigation represented by the following equation4:

q � qt � �q for qt > 0 (4)

The �nal date (t = T ) corresponds to harvesting, when actual crop yield becomes known.

Let Y (�) denote the crop yield function; that quantity depends only on the �nal biomass at

date T and is denoted Y (MT ).

4If positive, the application level qt is subject to technological constraints with q and �q exogenous. The

farmer can face some limitations on the quantity of water applied for each irrigation since the investments

are �xed in the short term. See Bontems and Favard ([3]) for details on that topic.
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The pro�t per hectare of the farmer can be written as:

� = r � Y (MT )� CFT �

T�1X
t=1

(c � qt + Æt � CF ) (5)

where r denotes output price; CFT denotes �xed production costs; c is water price; Æt is a

dummy variable taking the value 1 if the farmer irrigates and 0 if not. CF represents costs

due to labour and energy for each watering.

The farmer's sequential problem is the following:

Maxfqtgt=1;:::;T�1 r � Y (MT )� CFT �

T�1X
t=1

(c � qt + Æt � CF ) (6)

s=c

8><>: Mt+1 �Mt = ft(Mt; Vt)

Vt+1 � Vt = gt(Mt; Vt; qt)
(7)

and s=c

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Qt+1 �Qt = �qt

Æt =

8><>: 0 si qt = 0

1 si qt > 0

q � qt � �q for qt > 0

Mt � 0; Vt � 0; Qt � 0

M1 = �M; V1 = �V ; Q1 = Q

(8)

The constraints (7) are the main dynamics while (8) are technical, and physical con-

straints. This problem is purely analytical here and the functions ft and gt are unknown.

We will however solve it in the next section using an agronomical simulation tool and an

optimization procedure.

The solution of this program is the optimal sequence of decisions:

q�(Q) = fq�t gt=1;:::;T�1 (9)

This sequence strongly depends on the total quantity of water available for irrigation, Q.

Using (9) and (5), we obtain the optimized pro�t function depending on Q as follows:

��(Q) = r � Y �(MT )� CFT �

T�1X
t=1

(c � q�t (Q) + Æ�t � CF ) (10)

6



2.1.2 De�nition of the value of water

Under a limited total quantity of water available, the value of water as an economic good, is

the amount of money the farmer is willing to pay for it. Like any other good, water will be

used by farmers as long as the bene�ts from the use of an additional unit of resource exceed

its cost. As water becomes scarce, the farmer value of water becomes greater than the real

water price, c. In other words, the marginal pro�t d�

dQ
is greater than the water charge c

and therefore the farmer is willing to consume more water than his limited total quantity of

water Q.

For a given Q, we de�ne the water value as the maximum amount of money the farmer

would be ready to pay for the use of one additional unit of the resource. This 'opportunity'

cost, noted �(Q), is de�ned as the derivative of the optimized pro�t function:

�(Q) =
d��(Q)

dQ
(11)

evaluated for the given total quantity of water.

The knowledge of �(Q), for any value of Q, gives the willingness to pay function of the

farmer. This function, usually noted p(Q), is the inverse of the irrigation water derived

demand function, noted by Q(p) where p is the irrigation water pricing. Therefore, the

irrigation water derived demand function is completely determined once its inverse, the

willingness to pay, is known.

2.2 Demand function estimation

In order to estimate demand function, initially it is necessary to have, �rst, data relating

to total quantities of water and associated maximized pro�ts, and second, an estimation

procedure.

2.2.1 Data generation

We generate data composed of maximized pro�ts and total quantities of water by solving the

sequential decision model described in section 2.1.1. We will present only a brief description

of the numerical resolution procedure of this problem ; a detailed description of the sequential

decision model can be found in Bontemps and Couture [1] or Couture [6].

Figure 1 shows the numerical procedure integrating the agronomical model, EPIC-PHASE,

an economic model, and an algorithm of search of the solution. To simplify the presentation

of the numerical framework, we consider the case of known weather conditions and for a
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Figure 1: Numerical procedure of solution.

given quantity of water. The agronomical model, EPIC-PHASE, was used to generate in-

formations relative to the state variables (previously represented by the transition functions

ft and gt), and to determine crop yield for various irrigation schedules. Given the prices

of inputs and output, the economic model uses the yield predictions from the plant-growth

simulation model, and evaluates the pro�t for each decision sequence. Finally the algorithm

of search identi�es the optimal decision path by examining exhaustively the set of all sim-

ulated pro�ts5. Then the maximized pro�t, ��, is obtained. By repeating this procedure

for di�erent total quantities of water and then for di�erent weather conditions, we obtain a

database on which we base our estimation procedure.

2.2.2 Nonparametric estimation

In order to estimate the water value, it is necessary to estimate �rst the optimized pro�t

function and its derivative. We chosed a widely used nonparametric kernel estimator (Pagan

5The set of constraints de�ned by (8) reduces the space of available irrigation schedules. Therefore the

problem may be solved using an algorithm of search on all possible cases. Otherwise, we would have be

obliged to use a global optimization program such as Genetic Algorithm (Goldberg [11]), to �nd the optimal

schedule.
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and Ullah [25]), to estimate pro�t function and demand function. A major advantage of the

nonparametric method is that it allows to estimate an unknown function without assuming

its form. Estimation is only based on observed data and is very powerful. In the past decades

several nonparametric estimators have been developed (Härdle [12]), they are all based on a

weighted sum of functions of the data.

� Pro�t function estimation

Using (10), the estimation of the optimized pro�t function lies on the set of simulated data

(Qi;�
�

i )i=1;:::;n obtained by the numerical model. The unknown function, ��(�), is punctually

estimated on these n couples (Qi;�
�

i ). The kernel estimator of pro�t function evaluated for

any value of Q, is a weighted sum of the observed responses Qi, the weight being a continuous

function of observed quantities, Qi, and evaluation point Q. It is de�ned as :

d��(Q) =

Pn
i=1�

�

i �K
�
Qi�Q

h

�
Pn

i=1K
�
Qi�Q

h

� 8 Q 2 R (12)

where K(�) is a continuously di�erentiable function, the "kernel". We use a Gaussian kernel

function among existing kernel functions. Note that d��(Q) will inherit all the continuity and

di�erentiability properties ofK. Therefore d��(Q) is continuous and di�erentiable. The band-

width, noted h, determines the degree of smoothness of d��(Q); its choice will be discussed

later in this section.

� Demand function estimation

In order to estimate the demand function, we will use the property that the pro�t function

estimator is di�erentiable. If the estimate d��(Q) properly re�ects the pro�t function, ��(Q),

then the estimate of the pro�t function derivative is equal to the derivative of the estimate

of the pro�t function (Härdle [12]). Therefore a derivation of (12) with respect to Q will

give an estimator of the demand function6.

In other words, the estimator
d@��
@Q

(�) of @��

@Q
(�) is just the derivative of the estimator d��(�).

More precisely: d@��

@Q
(Q) =

@

@Q

 Pn
i=1�

�

i �K
�
Qi�Q

h

�
Pn

i=1K
�
Qi�Q

h

� !
8 Q 2 R (13)

6Note that the Mack and Müller's estimator [18] is easier to use for derivation since it has a denominator

which does not depend on the derivative variable (Q here). Since the derivation calculus are quite obvious

in our case, we have used the `classic' kernel estimator, but we suggest to use this estimator for advanced

derivation estimation.
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This can be rewritten as:

d@��

@Q
(Q) =

1�Pn
i=1K

�
Qi�Q

h

��2 � �� � nX
i=1

��

i �
1

h
�K 0

�Qi �Q

h

��
�

� nX
i=1

K
�Qi �Q

h

��

+

� nX
i=1

��

i �K
�Qi �Q

h

��
�

� nX
i=1

1

h
�K 0

�Qi �Q

h

���

The estimator
d@��
@Q

(Q) is also continuously di�erentiable because it incorporates the kernel

function K(�) and its derivative K 0(�).

� Smoothing parameter selection

The choice of the smoothing parameter h, is always a crucial problem. If h is small, then

we get an interpolation of the data. On the other hand, if h is high, then the estimator

is a constant function that assigns the sample mean to each point. There exist several ap-

proaches to bandwidth selection (Vieu [29]) using theoretical considerations (plug-in method)

or data-based method (cross-validation method).

We use, as a benchmark, the value obtained by cross-validation. The aim of this method

is to choose a value for h minimizing the cross-validation criterion, de�ned as a sum of

distances between the estimator b��(�) evaluated at Qi and the real data observed ��

i . We

denote the bandwidth selected by the cross-validation criterion by h�. In practice, a re�ne-

ment consists in using a slightly smaller bandwidth than h� in order to limit oversmoothing.

Following Härdle [12], the smoothing parameter selected for the demand function esti-

mator is the same that the one chosen for the pro�t function estimator.

3 An application in the South-West of France

The procedure for demand function determination was applied using data from the South-

west of France. In this area, agriculture is the largest water consumer with 2/3 of total water

consumption. During low river �ow periods there is a strong competition on water between

urban and industrial consumers. In this area, irrigated agriculture is quite recent. Irrigation

water is drawn from rivers supplied by mountain reservoirs. The irrigation tools used in the

South-West of France are generally sprinkler systems. The reference crop is corn because it

is the main irrigated crop in this area.
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Year Output price Water price Fixed cost per irrigation Fixed cost

r (Francs/Ton) c (Francs/m3) CF (Francs) CFT (Francs)

1989 1049 0.25 150 2150

1991 1038 0.25 150 2150

1993 778 0.25 150 2150

Table 1: Source: ITCF [17]; Michalland [19] and Couture [6].

3.1 Data

A �rst set of data is required by the crop growth simulator model. This data set includes

weather, soil, technical and irrigation practices, and crop data. The daily weather input �le

was developed from data collected at the INRA station in Toulouse, for a 14-years series

(1983-1996). The soil characteristic data were included in the crop growth model. The soil

is composed of clay and chalk.

Economic output and input price data are included as a secondary data set (see Table

1). Output prices are farm-level producer prices. Input prices include irrigation variable and

�xed costs, and other �xed production costs. The cost per irrigation , (CF ), includes energy

and labour costs. The �xed production costs, (CFT ), are composed of fertilizer, nitrate, seed,

and hail insurance costs.

3.2 Estimation results

We have allowed the quantities of water available for irrigation to vary7 between 0 and

4500 m3 per hectare. In order to account for weather variability, we have run the model over

the 14 years available, but we have restricted our attention for three weather conditions: a

dry year (1989), a medium year (1991) and a wet year (1993).

The �gures 2 and 3 shows the estimation of the maximized pro�t functions. These

estimations are presented for each year considered in our study. Note that these estimated

pro�t functions have the same trend; they increase to reach a maximum, and then remain

constant at this maximum level.

7We have ran the simulation for 19 di�erent total quantities of water, mainly because the computation

time for the agronomic model and the optimization procedure was important.
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Figure 2: Pro�t functions for medium (1991) and wet (1993) year

12



Simulated points using Epic-Phase
Pro�ts estimation for 1989
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Figure 3: Pro�t and demand function for the dry year (1989)
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Figure 4: Demand functions for dry, medium and wet year.

This trend is due to the yield-water relation: we know (Hexem and Heady [14]) that plant

yield increases as water quantity increases below some maximum value, then decreases when

water quantities are further increased . The estimated pro�t functions have some similarity

with yield-water functions except when water is no more a limiting factor; then the pro�t

remains constant even if water quantities are increased. The maximum pro�ts vary with

weather conditions [they reach roughly 10500, 8400, and 6200 Francs per hectare for dry,

medium and wet conditions respectively], and are obtained for various quantities depending

on the weather.

The demand function estimations are directly derived from the estimated pro�t functions,

as shown in Figure 3.The results of the demand estimates in Figure 4 show clear di�erences

in water demand for the three weather conditions. The drier the weather, the higher the

irrigation water demand. However these curves present the same shape and trends. These

three demand functions are decreasing and nonlinear.

Points located on both axis are of interest, for example, for a medium year, a price set

above 1.45 F/m3 will reduce water demand to zero, while for a total quantity of water greater

than 1700 m3 per hectare, it is not in the farmer's interest to irrigate. These limit points
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Previous studies Price levels

(F=m3)

Montginoul and Rieu [20] 1.51

Varela-Ortega et al. [28] from 0.16 to 1.3

Table 2: Price levels at which the changes in price-responsiveness appear in the litterature.

greatly vary with climate and are mainly due to precipitations8.

Another interesting feature is that the estimated water demand functions have in�exion

points and can be decomposed into several areas. For small quantity of water available,

irrigation water demand seems to be quite inelastic. If one increases the total quantity of

water available, the shape of the curve changes and the demand appears more elastic. The

threshold price at which the changes in price-responsiveness appears depends on weather

conditions and are ranging from 0.30 F=m3 in wet year to 1.60 F=m3 in dry year.

These results are con�rmed by existing studies using programming methods in the liter-

ature on irrigation water demand (see Table 2).

3.3 Economic analysis

The previous results are crucial information for the regulator in order to analyze the e�ects

of a water regulation policy based on prices. The impact of an increase in the water price

will depend not only on the climate but also on the area of the initial and �nal prices. For

example, if we analyze the increase of 0.10 F=m3 starting with the real price of the water

(0.25 F=m3), the total quantity of water is reduced by only 80 m3=ha in dry year (3 % of

the initial consumption), while it is reduced by 140 m3=ha in medium year (10 %), and by

90 m3=ha in wet year (20 %). This price increase leads also to changes in the surplus of the

farmer which is reduced by 25 F=ha in dry year (0.3 % of the initial surplus), by 43 F=ha

in medium year (0.5 %), and by 27 F=ha in wet year (0.45 %).

If one suppose that the real water price is increased twofold (0.5 F/m3), then the per-

centage of the reduction on water consumption is greater than the percentage of the increase

in price, for medium and wet years; whereas in dry year, the proportion is much less than a

half of the initial consumption.

8The annual precipitation is 402.5mm for 1989; 676.5mm for 1991; 901.5mm for 1993, in the considered

area.
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An increase of the real water price will always have impacts on water consumption. Its

extent depends on the location of the new price on the demand function and on the climate.

These results need to be integrated in de�ning water pricing policy. Therefore, the regulator

has to determine a range of water prices depending on weather conditions. He will implement

the real water price regarding information on climate at the beginning of the irrigation when

the farmer negotiates the total water quantity available over the season. The drawback of

this policy is that it may induce an administrative cost of implementation.

4 Conclusion

Our paper presents a methodology for evaluating irrigation water demand based on the eval-

uation of the farmer's willingness to pay for having one additional unit of water. Demand

functions are obtained through a sequential decision-making program. The estimation pro-

cedure is based on data generated by a numerical method integrating a crop-growth model,

an optimization procedure linked to a economic model, and nonparametric methods.

This method is applied to estimate demand functions in the South-West of France. We

represent these functions for three representative weather conditions. We show that irri-

gation water demands strongly depend on weather conditions, but have the same shape:

they are decreasing and nonlinear. We can decompose each of them into two major ar-

eas: water demand is elastic for low quantities of water available and becomes inelastic for

larger quantities. The price levels at which water demand elasticity changes vary around

0.30 F=m3 for wet weather conditions up to roughly 1.60 F=m3 for a dry year. Water poli-

cies have to include this information for de�ning pricing schemes taking into account climate.

The method has been applied to estimate French demands on a particular crop, but

irrigation water demand is also an important issue in many developing countries, presenting

di�erent speci�cities in terms of land, irrigation practice and crops. However, the method

can be adapted in other countries, for other crops and for other demand estimations. The

crucial points are the crop-growth simulation model, the irrigation practices and the data

available. The agronomic model has to be precisely calibrated for the crop, land and climate

one wish to study. This was the case for EPIC-phase, which has been precisely calibrated

for the main crop (maize) in the south-west of France. However, other agronomic simulation

tools exist and perform well (Cropsyst, STICS, and even EPIC) in other countries and for

other climates, even arid ones (Donatelli et al [9] or Stockle and Donatelli [27]). The irriga-
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tion practice we speci�ed here are also closely related to the crop studied and to the region,

but, regardless of the schedule modi�cations, the optimisation process remains valid for any

kind of crop and farmer. Therefore the method may be applied, once the speci�city of the

irrigation patch and some general economic data relative to irrigation costs and yield prices

are known.

Our method can also be used in a broader framework where the weather is unknown and

the farmer decision process is stochastic. As time goes by, the farmer observes the climate

and integrates this information in his decision process. The complexity of the resolution

procedure is increased, but the method remains valid and operational. The demand function

under stochastic condition can therefore be estimated (Bontemps, Couture and Favard [2])

and the value of the information can be quanti�ed during the irrigation season (Couture [6]

or [7]).

Another natural extension concerns the problem of on-farm irrigation scheduling in order

to take into account competition for water between crops. Due to the probable complexity

of any extension of this model, some advanced numerical tools, such as genetic algorithm

(Goldberg [11]), may be needed, but, using the proposed method, on-farm water demand

function may be estimated in the same way.
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