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Abstract

Water supply for irrigation is limited in the southwestern France as in many regions of the

world. Many con�icts between users highlight the fact that e�cient irrigation scheduling is

needed. The aims of this study are twofold. First we identify optimal irrigation strategies

under stochastic weather conditions. Second we evaluate the economic losses due to uncer-

tainty and risk aversion. The agronomic crop growth model, EPIC-PHASE, generates yield

data which are incorporated into a dynamic programming model for the determination of op-

timal irrigation scheduling under risk and limited water supply, in the southwestern France.

The results indicate that optimal dynamic irrigation strategies produce higher pro�ts, and

utilities, and required less irrigation water than the optimal agronomic irrigation strategies.

Key-words : irrigation scheduling, uncertainty, risk aversion, bioeconomic simulation

model, optimization.
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Résumé

Dans le Sud-ouest de la France, comme dans de nombreuses régions du monde, l'o�re d'eau à

usage agricole est limitée. De ce fait, une gestion e�cace de l'irrigation s'impose. L'objectif

de cette étude est double. Premièrement, nous identi�ons les conduites d'irrigation opti-

males sous des conditions climatiques aléatoires. Deuxièmement, nous évaluons les pertes

économiques dues à l'incertitude et à l'aversion pour le risque. Le modèle agronomique

de simulation de croissance de la plante, EPIC-PHASE, engendre des données relatives au

rendement qui sont ensuite incorporées dans un modèle économique de programmation dy-

namique. Ce modèle permet de déterminer la conduite d'irrigation optimale en univers

aléatoire, dans un contexte de ressources en eau limitées, pour la région du Sud-ouest de la

France. Nous montrons que les conduites dégagées par le modèle engendrent des niveaux de

pro�t et d'utilité plus importants que ceux obtenus pour des conduites "agronomiquement"

optimales malgré l'o�re en eau limitée.

Mots-clés : conduite d'irrigation, incertitude, aversion pour le risque, modèle de simula-

tion bio-physique et économique, optimisation.
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1 Introduction

Irrigation water in the southwestern France, as in many regions of the world, is limited. In

this area, farmers generally intake water from streams. These intakes are di�cult to reg-

ulate because irrigation water consumptions are rarely metered, and therefore unobserved.

Moreover, the stochastic weather conditions can induce water scarcity and limit water avail-

able for irrigation. These conditions place a premium on irrigation scheduling management.

Determining the optimal timing of irrigations over a season in an uncertain environment is

a signi�cant problem when water is scarce.

We deal with the speci�c problem of �nding the optimal allocation of a �nite quantity

of water over an irrigation season on a particular area of crop in the face of stochastically

varying rainfall. We address two questions : When and how much to irrigate ? What are

the economic losses due to the risks the farmer has to face ?

A wide range of modeling procedures has been used for economic evaluation of irrigation

scheduling. These methods principally include the use of dynamic programming (Yakowitz,

1982; Rao et al., 1988) or control theory (Zavaletta et al., 1980). They provide a potential

tool in de�ning optimal allocation of intraseasonal irrigation water. No analytic results

appear in these studies. They only compute numerical models in order to obtain solutions.

One way to improve and adapt these models is to incorporate bio-simulation models.

Crop growth simulation models integrated in a dynamic economic analysis of irrigation

under limited water supply become frequently used as research tools (Zavaletta et al., 1980 ;

Epperson et al., 1993). The way farmers make irrigation decisions under stochastic conditions

has been best explored in the literature. However the latter studies of economically optimal

irrigation water schedule were based on the strong assumption that the producer is risk

neutral (Zavaletta et al., 1980) while it is recognized in the literature that many farmers are

risk averse (Binswanger, 1980). Boggess and Ritchie (1988) address an issue to this problem;

they de�ne means and standard deviations of net returns, and stochastic dominance is used

to evaluate the risk associated with the alternative irrigation strategies. Botes et al. (1995)

de�ne expected utility as criteria but impose a Constant Absolute Risk Aversion (CARA)
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utility function. Chavas and Holt (1990), Pope and Just (1991) proved that farmers exhibit

signi�cant aversion to downside risk (higher moments of crop yields modify the optimal

decisions of farmers). A Constant Relative Risk Aversion (CRRA) and Decreasing Absolute

Risk Aversion (DARA) function is preferable to CARA functions. No works assume CRRA

utility function.

Moreover, to our knowledge, no studies investigated this framework as an irrigation

management tool. Speci�cally, no applications of this problem on the southwestern France

area with economic criteria guiding decisions exist; there only exist agronomic studies (Ca-

belguenne et al., 1995).

To overcome these limitations, the objective of this study is to select irrigation plans

within irrigation scheduling strategies. We use a crop growth model, EPIC-PHASE1, to

generate crop yields. This information is incorporated in an economic model whose objective

function is the expected utility, subject to a number of technical constraints. This integrating

model is used to �nd irrigation decision rules in both a deterministic and an uncertain context

under limited water supply. In a deterministic environment, the farmer knows climatic

conditions. In an uncertain environment, the farmer has some expectations of weather

conditions and may incorporate some information during the season.

Our paper makes two contributions to the literature on irrigation scheduling under risk.

First, we conceive an economic model integrating a crop growth simulation tool. We use this

model to de�ne appropriate irrigation under limited water supply and uncertain climatic

conditions. The advantage of our approach is that it uses accurate de�nition of production

and decision making model. It also assumes that weather conditions are unknown. Second,

our framework assumes risk aversion and sequential input decisions. Many existing sequen-

tial decision models assume risk neutrality. To our knowledge, there are no studies in the

literature proposing models of irrigation decisions under risk, without imposing restrictive or

inconsistent assumptions on the farmer's utility function. We use a CRRA utility function

that is recognized in the literature to describe the farmer's risk attitude with a �xed risk

1EPIC-PHASE : Erosion Productivity Impact Calculator - PHASE
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aversion parameter.

The results show that irrigation strategies that maximize pro�ts per hectare of corn un-

der perfectly known environment give high yields and associated pro�ts with quotas smaller

than those needed to obtain optimal agronomic yields. We emphasize the impact of the risk

on irrigation both from a qualitative and a quantitative point of view.

The theoretical model is presented in section 2. In section 3, we present the highlights of

the numerical method and data used to solve the problem. The results are given in section

4. Section 5 concludes the paper.

2 The model

As a useful benchmark, we �rst consider the problem of an optimal irrigation scheduling in

a deterministic context, the weather being known for the whole irrigation period (section

2.1). We then introduce random considerations in the section 2.2.

2.1 The deterministic framework

Consider a farmer facing a sequential decision problem of irrigation. At date 1, the farmer

knows the water quota available for the season, Q, the initial water stock in soil, �V , and

the state of crop biomass, �M . The farmer has to take decisions on irrigation at each date

t = 1; :::; T � 1, and must choose the quantity of irrigation water denoted qt. Therefore,

we have a dynamic model of sequential choice under limited water supply, with three state

variables (Mt; Vt; Qt) for t = 1; :::; T � 1.

Mt+1 �Mt = ft(Mt; Vt) (1)

Vt+1 � Vt = gt(Mt; Vt; qt) (2)

Qt+1 �Qt = �qt (3)

The change in the level of the biomass at any date (equation 1) is a function (ft) of

the present date state variable and water stock in soil. The change in water stock in soil
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(equation 2) depends moreover on the decision taken at the current date. The quota has a

simple decreasing dynamic (equation 3).

Given the complexity of the production function, we made here assumptions regarding

the dynamic of the soil-plant continuum, as well as simpli�cations. Notice that these as-

sumptions do not modify the numerical resolution of the problem, as we will see in the

section 3.

The di�culty of applying small and high quantities of irrigation water is included in the

model as an additional constraint:

q � qt � �q for qt > 0 (4)

There are technical (irrigation practice, capacity) as well as economic motivations for this

constraint (4). For example, during water crisis in summer, the regulator can �x to �q the

maximum amount of water to be intaken for irrigation.

The �nal date (t = T ) corresponds to harvesting when actual crop yield becomes known.

Let Y denote the crop yield function ; that quantity depends only on the �nal biomass at

date T and is denoted Y (MT ).

The pro�t per hectare of the farmer can be written as:

� = p � Y (MT )� CFT �

T�1X
t=1

(c � qt + �t � CF ) (5)

where p denotes output price; CFT denotes �xed production costs; c is water price; �t is a

dummy variable taking the value 1 if the farmer irrigates and 0 if not. CF represents �xed

costs for each irrigation due to labour and energy costs. We assume in the following that

there is no uncertainty on output price.

The farmer is represented by a strictly monotonic, increasing and concave Von-Neumann-

Morgenstern utility function, denoted U . We chosed the most common CRRA utility func-

tion ; it has the form :

U(�) =
�(1�r)

(1� r)
(6)
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with r (r 6= 1), the relative risk aversion coe�cient. We have assumed a risk aversion coe�-

cient of 0:001, in accordance with the literature (Jayet, 1992).

The model formulation is conceptually similar to the dynamic models used in Zavaleta

et al.(1980), Johnson et al.(1991) and Vickner et al.(1998) but these studies do not take into

account risk aversion among other aspects of the problem that we consider.

The farmer sequential problem is the following :

Maxfqtgt=1;:::;T�1 U
�
p � Y (MT )� CFT �

T�1X
t=1

(c � qt + �t � CF )
�

(7)

s=c

8>>>>><
>>>>>:

Mt+1 �Mt = ft(Mt; Vt)

Vt+1 � Vt = gt(Mt; Vt; qt)

Qt+1 �Qt = �qt

(8)

and s=c

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�t =

8><
>:

0 si qt = 0

1 si qt > 0

q � qt � �q iff qt > 0

Mt � 0; Vt � 0; Qt � 0

M1 = �M; V1 = �V ; Q1 = Q

(9)

The equations (8) are the main dynamics while (9) are technical, and physical constraints.

We will solve numerically this problem in section 3.

2.2 The stochastic framework

The model under uncertainty is conceptually the same than the deterministic model. The

di�erence lies in the dynamic behavior of the system that now incorporates stochastic weather

variables, ~!t. The dynamics of biomass and water stock in soil (equations 1 and 2) become:

Mt+1 �Mt = ft(Mt; Vt; ~!t) (10)

Vt+1 � Vt = gt(Mt; Vt; qt; ~!t) (11)
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From now on, the farmer's objective will be the expected utility. We have to de�ne now how

the farmer does (or does not) incorporate the information he gets during the season. We

focus here on two main procedures known as �feedback� and �open-loop� .

2.2.1 The feedback strategy

In this framework, the farmers incorporates all the information he gets during the decision

process. At date 1, the farmer takes the decision q1 according to his weather expectations.

On date 2 he integrates the decision made at date 1 and actual climat, he may revise his

weather expectations. The decision taken at date t clearly depends on the weather conditions

observed during the period [t� 1; t] and on the past decisions q1; � � � ; qt�1 . This procedure

is repeated up to date T � 1.

Formally, the producer sequential problem is :

Maxq1E!1Maxq2E!2=!1 :::MaxqT�1E!T�1=!T�2
E!T

h
U
�
p�Y (MT )�CFT�

T�1X
t=1

(c � qt + �t � CF )
�i

(12)

s=c

8>>>>><
>>>>>:

Mt+1 �Mt = ft(Mt; Vt; !t)

Vt+1 � Vt = gt(Mt; Vt; qt; !t)

Qt+1 �Qt = �qt

(13)

and subject to the unaltered constraint (9).

E!1 denotes the expectation on !1. E!t=!t�1
represents the conditional expectation on !t

given !t�1.

2.2.2 The open-loop strategy

The farmer's decision program is an �open-loop� one if he decides to choose all irrigations,

fqtgt=1;:::;T�1, before observing stochastic variables. In this case, all the decisions are made

at date 1. At each period, the farmer does not revise his expectations. This procedure serves

as benchmark since no information is incorporated during the season.
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The problem is the following:

Maxffqtgt=1;:::;T�1gE!1E!2 ::::E!T

h
U
�
p � Y (MT )� CFT �

T�1X
t=1

(c � qt + �t � CF )
�i

(14)

s=c

8>>>>><
>>>>>:

Mt+1 �Mt = ft(Mt; Vt; !t)

Vt+1 � Vt = gt(Mt; Vt; qt; !t)

Qt+1 �Qt = �qt

(15)

and subject to the unaltered constraint (9).

E!1E!2 ::::E!T
represents the expectation on the whole information set (!1; � � � ; !T ).

Under uncertainty, the two classes of strategies, open-loop and feedback, can be distin-

guished by the amount of information used and the anticipation of future knowledge. Note

that the optimal stochastic control belongs to the feedback class.

3 Empirical application, procedure and data

The complexity involved in modeling and in deriving analytical solutions leaves numerical

solutions as a viable alternative.

3.1 Empirical application and procedure

We use a crop growth model to generate information relating to state variables, and previ-

ously denoted by functions ft and gt. The use of this model allows new ways of implementing

the engineering production function approach. Using the EPIC-PHASE2 model it is pos-

sible to simulate yields for a large variety of agricultural techniques. The model allows us

to represent the e�ects on yields arising from changes in the levels and timing of irrigation

2The agronomic model, EPIC-PHASE (Cabelguenne and Debaeke, 1995), is a version of EPIC (Sharpley

and Williams, 1990 ; Williams et al., 1990) which has been adapted by INRA (Toulouse). It has been

developed to estimate crop yields for various irrigation scheduling, involving alternative irrigation timing.

The EPIC-PHASE model predicts crop growth and water use in daily increments. This modi�ed version of

the model, EPIC, simulates more precisely the e�ects of water stress on crop growth and yield.
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1 2 3 4 5 6 7 8 9 10

Harvest

Decision periods

Irrigation season

June 20 June 25 June30 July 5 July 10 July 20 July 30 August 10 August 20 August 30 September 29

Figure 1: Decision process.

and climat conditions. It is considered as a sophisticated and powerfull tool for generating

agricultural production surface. It has been validated by agronomists in the studied region

for the crop considered, that is corn (Cabelguenne and Debaeke, 1995). The outputs from

the plant simulation model are used as input in the economic model.

We make di�erent assumptions in order to solve the problem. We assumed that the

irrigation season is not endogenous and begins on June 20th. The whole irrigation season is

subdivided into ten irrigation intervals of 5 or 10 days duration which is a common practice

(Figure 1). The maximum number of irrigations3 is 5 over the 10 decision dates. The quan-

tity of water in each watering is calculated as an uniform repartition of the total quantity of

water4 that is a �fth of the quota. The weather expectations are simulated by using daily

average values from a sample of 14-year observed weathers .

In the feedback case, the procedure used to �nd the solutions is an approximation of the

�pure feedback� de�ned in section 2.2.1. We de�ne it as an �open-loop feedback� procedure,

and is very similar5 :

3The average number of irrigations realized in Toulouse area is 5 (Enquête Agreste, 1996).
4This assumption is realistic because it is a common practice observed in the considered area.
5It can be shown that �open-loop feedback� and �feedback� strategies are equivalent if the system is linear

and the objective function is quadratic (see Bradford and Kelejian (1981)).
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At date 1, the farmer takes all the irrigation decisions fqtgt=1;:::;T�1 according to his

weather expectations. Then, he integrates only his optimal decision at date 1 and actual

climat. He also uses a Bayesian rule to adjust his expectations for the remaining future

periods according to observed past information. At date 2, the farmer de�nes all remaining

irrigation decisions fqtgt=2;:::;T�1, according to these revised expectations, and keeps only his

choice for date 2. This procedure is repeated up to date T � 1.

The economic model identi�es the optimal irrigation schedule by using yields generated

by the crop growth model on di�erent irrigation strategies. The formulation of this problem

is based on a method of global optimization. By the contraints imposed, the problem can

be solved using an algorithm of search on all possible cases since the set of constraints limits

the space of available irrigation schedules. Then, we obtain the optimal decision pattern by

examining exhaustively the set of simulated utilities.

3.2 Data

The simulation model was initialized with soil and corn6 parameters typical for production

practices in the southwestern France. Data used to run EPIC-PHASE include weather

variables (daily values of air temperature, solar radiation, precipitation, wind speed and

relative humidity), soil variables, erosion variables, parameter values for crop, fertilization,

pesticide and irrigations. The daily weather input �le was developped from data collected

at the INRA station in Toulouse, for a 14-year series. The average price per ton for corn

was 1440 Francs in Toulouse area. The crop price is known for each year. Costs equal the

variable cost of irrigation water plus other �xed costs. The per-unit cost of irrigation water

is estimated as 0,25 F per hectare. Fixed costs by irrigation are evaluated as 150 F ; they

included energy and labour costs. Global �xed costs evaluated at 2150 F per hectare are

composed of fertilizer, nitrate, seed, and hail insurance costs.

6Corn is the only crop considered in this study. With approximatly 80 % of irrigated area in the south-

western France, corn remains the main irrigated crop.
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Pro�t Yield Water quota Number of

(Fr=ha) (T=ha) (m3=ha) irrigations

� No irrigation: 5529 7,32 0 0

� Agronomical optimum: 7291 12,90 4970 19

� Optimal irrigation scheduling: 8929 11,63 1500 5

Table 1: Pro�ts and yields simulated with a �xed total available quantity of water

equal to 1500 m3=ha.

4 Results and discussion

We assume that the farmer faces a �xed total available quantity of water7 of 1500m3=ha. We

chosed a dry8 climate for the unknown reference climate in the simulation . The problem of

irrigation scheduling is particularly accurate under these stochastic weather conditions and

with limited water supply.

In the perfectly known environment case, we use our model to generate optimal irrigation

scheduling strategies and we compare these irrigation decision plans to optimal agronomic

strategies for the reference year. We illustrate the necessity of economic analysis of irrigation

management decisions (see Couture (2000) for details)) and compare the small di�erences

in terms of yield, with the big ones in terms of water and money savings between these

strategies.

Under uncertainty, we �rst compare the strategies with the ones obtained under a known

climate ; then we highlight the di�erences due to the way information is taken into account.

4.1 Optimal irrigation water allocation with deterministic environ-

ment

The model is used to analyse the impact of weather variables on yields and pro�ts. The

results are presented in Table 1. The table contains water quantity, number of irrigations,

7In Toulouse area, the average quota used by farmers is 1800 m3
=ha (Enquête Agreste, 1996).

8The reference year is 1989
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Optimal utility Yield

(F/ha) (T/ha)

Deterministic case 8854 11,63

Feedback strategy case 8594 11,38

Open-loop strategy 8386 11,18

Table 2: Simulated optimal utilities and yields with a uniform repartition of the

�xed total available quantity of water equal to 1500 m3=ha.

pro�ts and yields for the no-irrigation case, agronomically optimal case (potential case), and

so-called �optimal� case obtained by the model. The agronomically optimal case with no

restriction on water provides a benchmark against which the e�ects of alternative irrigation

procedure strategies can be evaluated. It is clear from Table 1 that moving the optimal tim-

ing of irrigations results in less total water consumed, relatively high yield and pro�t. If the

farmer follows the schedule recommanded by the optimization model, he makes important

savings of resource and he improves water management. These analyses for managed irriga-

tions with limited water supply can be accomplished with little loss in yield. This result is

also due to the fact that the weather is known. Speci�cally, by optimizing the timing and

water rates, pro�ts for the reference year increase despite the limitation on water supply.

4.2 Optimal irrigation water allocation under uncertainty

Under uncertainty, the farmer chooses the optimal irrigation scheduling maximizing expected

utility according to weather risk and expectations. Then, we applied the principle of solution

generation with the feedback strategy and the open-loop one. In the feedback strategy case,

we assume that the farmer revises each period his expectations ; therefore, the expected

climate is close to the real one. On the contrary, in the open-loop strategy case, the farmer

does not modify his expectations.

The perfectly known environment results provide the optimal irrigation strategy and a

benchmark for determining the performance of the stochastic strategies. The primary e�ects
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Decision periods

Optimal irrigation scheduling 1 2 3 4 5 6 7 8 9 10

Deterministic 300 300 300 300 300

Feedback strategy 300 300 300 300 300

Open-loop strategy 300 300 300 300 300

Table 3: Optimal irrigation scheduling under uncertainty with a uniform reparti-

tion of the �xed total available quantity of water equal to 1500 m3=ha.

of uncertainty are to reduce yields and therefore utilities (Table 2). With the open-loop

strategy and the feedback one, results obtained for yields slightly di�er from this obtained in

the deterministic case. Therefore, di�erences between utilities (respectively 8594 F=ha and

8386 F=ha for the feedback strategy and for the open-loop one) are found, representing a

decrease of almost 2,9 % and 5,3 % with respect to the perfect knwoledge case (8854 F=ha).

The secondary e�ects of risk concern optimal irrigation scheduling that di�ers between the

three cases (Table 3). The optimal feedback irrigation schedule is more close to the optimal

deterministic irrigation strategy than the optimal open-loop one, because of expectation

revisions. There appears three common irrigation dates between the feedback case and the

perfect knowledge one while there only are two similar ones between the open-loop case and

the deterministic one.

The utilities di�erences between the feedback strategy and the open-loop strategy cases

could be considered to be the cost of not revising expectations, and represent the value of

information. The farmer always must use information that is available to make decisions

although this information is not complete. The di�erence between deterministic strategy

and uncertain strategies represents the cost of not possessing complete information.

5 Conclusion

The uncertain weather conditions surrounding agriculture make irrigation scheduling man-

agement di�cult. A simulation model that incorporates irrigation, economic and crop growth
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components, as well as an e�cient search optimizer, was used to solve the problem of in-

traseasonal irrigation water allocation under uncertainty or perfect knowledge environment

and under conditions of limited and unlimited water supply. The results exhibit two im-

portant conclusions. First, pro�t maximizing strategies generally make the farmer's pro�t

more important than yield maximizing strategies and call for signi�cantly less water, under

deterministic weather conditions. Second, under risk, expected utility maximizing irriga-

tion strategies are modi�ed. They depend on the farmer's expectations and the integration

of information in the decision making process. The use of more information improves the

farmer's ability to schedule irrigation and increases expected utility due to the attainment

of near optimal certain yield.

In our essay, we assumed that the farmer has ten decision times, and for each irrigation

decision, quantity applied was uniformly de�ned. To overcome this assumption, the simula-

tion model can be included within a global optimization program using neural networks or

genetic algorithms. Crop simulation models and the strategy evaluation procedure of this

study can be generalized to look at other variables a�ecting irrigation decisions as soil type,

or with other management practice decisions such as fertilization, planting and harvesting

dates. This model can be used to obtain crop-level irrigation water demand. As mentionned

earlier, the farmer faces a �xed and limited quota. Under water scarcity, he can be likely

to pay more for having additional water. Irrigation water demand can be evaluated on the

basis of the estimation of the farmer's willingness to pay for obtaining an additional unit

of water. A �nal extension of this work may include a method to determine the value of

irrigation scheduling information and its dynamic over an irrigation season.
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